CodeDocsSearchTool¶
实验性
我们仍在努力改进工具,因此未来可能会出现意外行为或变化。
Description¶
CodeDocsSearchTool is a powerful RAG (Retrieval-Augmented Generation) tool designed for semantic search of code documentation. It enables users to efficiently find specific information or topics within code documentation. By providing a docs_url
during initialization, the tool narrows its search scope to a specific documentation site. Alternatively, if no specific docs_url
is provided, it will search through a broad range of code documentation known or discovered during its execution, making it suitable for various documentation search needs.
安装¶
要开始使用 CodeDocsSearchTool,请首先通过 pip 安装 crewai_tools 包:
示例¶
使用 CodeDocsSearchTool 进行代码文档搜索,如下所示:
from crewai_tools import CodeDocsSearchTool
# To search any code documentation content if the URL is known or discovered during its execution:
tool = CodeDocsSearchTool()
# OR
# To specifically focus your search on a given documentation site by providing its URL:
tool = CodeDocsSearchTool(docs_url='https://docs.example.com/reference')
参数¶
docs_url
: 可选。指定要搜索的代码文档的 URL。在工具初始化时提供此参数可以将搜索重点放在指定的文档内容上。
自定义模型和嵌入¶
默认情况下,该工具使用 OpenAI 进行嵌入和摘要。要自定义模型,可以使用如下的配置字典:
tool = CodeDocsSearchTool(
config=dict(
llm=dict(
provider="ollama", # 或 google, openai, anthropic, llama2, ...
config=dict(
model="llama2",
# temperature=0.5,
# top_p=1,
# stream=true,
),
),
embedder=dict(
provider="google", # 或 openai, ollama, ...
config=dict(
model="models/embedding-001",
task_type="retrieval_document",
# title="Embeddings",
),
),
)
)